Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Arch Virol ; 169(2): 29, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216710

RESUMO

Genetic reassortment of avian, swine, and human influenza A viruses (IAVs) poses potential pandemic risks. Surveillance is important for influenza pandemic preparedness, but the susceptibility of zoonotic IAVs to the cap-dependent endonuclease inhibitor baloxavir acid (BXA) has not been thoroughly researched. Although an amino acid substitution at position 38 in the polymerase acidic protein (PA/I38) in seasonal IAVs reduces BXA susceptibility, PA polymorphisms at position 38 are rarely seen in zoonotic IAVs. Here, we examined the impact of PA/I38 substitutions on the BXA susceptibility of recombinant A(H5N1) viruses. PA mutants that harbored I38T, F, and M were 48.2-, 24.0-, and 15.5-fold less susceptible, respectively, to BXA than wild-type A(H5N1) but were susceptible to the neuraminidase inhibitor oseltamivir acid and the RNA polymerase inhibitor favipiravir. PA mutants exhibited significantly impaired replicative fitness in Madin-Darby canine kidney cells at 24 h postinfection. In addition, in order to investigate new genetic markers for BXA susceptibility, we screened geographically and temporally distinct IAVs isolated worldwide from birds and pigs. The results showed that BXA exhibited antiviral activity against avian and swine viruses with similar levels to seasonal isolates. All viruses tested in the study lacked the PA/I38 substitution and were susceptible to BXA. Isolates harboring amino acid polymorphisms at positions 20, 24, and 37, which have been implicated in the binding of BXA to the PA endonuclease domain, were also susceptible to BXA. These results suggest that monitoring of the PA/I38 substitution in animal-derived influenza viruses is important for preparedness against zoonotic influenza virus outbreaks.


Assuntos
Dibenzotiepinas , Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Humana , Morfolinas , Orthomyxoviridae , Piridonas , Tiepinas , Triazinas , Animais , Cães , Humanos , Suínos , Vírus da Influenza A/genética , Oxazinas/farmacologia , Piridinas/farmacologia , Piridinas/uso terapêutico , Virus da Influenza A Subtipo H5N1/genética , Tiepinas/farmacologia , Tiepinas/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Orthomyxoviridae/genética , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Substituição de Aminoácidos , Endonucleases/genética , Farmacorresistência Viral/genética
2.
Mol Ecol ; 32(1): 198-213, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36239465

RESUMO

Influenza A viruses (IAV) circulate endemically among many wild aquatic bird populations that seasonally migrate between wintering grounds in southern latitudes to breeding ranges along the perimeter of the circumpolar arctic. Arctic and subarctic zones are hypothesized to serve as ecologic drivers of the intercontinental movement and reassortment of IAVs due to high densities of disparate populations of long distance migratory and native bird species present during breeding seasons. Iceland is a staging ground that connects the East Atlantic and North Atlantic American flyways, providing a unique study system for characterizing viral flow between eastern and western hemispheres. Using Bayesian phylodynamic analyses, we sought to evaluate the viral connectivity of Iceland to proximal regions and how inter-species transmission and reassortment dynamics in this region influence the geographic spread of low and highly pathogenic IAVs. Findings demonstrate that IAV movement in the arctic and subarctic reflects wild bird migration around the perimeter of the circumpolar north, favouring short-distance flights between proximal regions rather than long distance flights over the polar interior. Iceland connects virus movement between mainland Europe and North America, consistent with the westward migration of wild birds from mainland Europe to Northeastern Canada and Greenland. Though virus diffusion rates were similar among avian taxonomic groups in Iceland, gulls play an outsized role as sinks of IAVs from other avian hosts prior to onward migration. These data identify patterns of virus movement in northern latitudes and inform future surveillance strategies related to seasonal and emergent IAVs with potential public health concern.


Assuntos
Vírus da Influenza A , Influenza Aviária , Animais , Vírus da Influenza A/genética , Influenza Aviária/epidemiologia , Teorema de Bayes , Animais Selvagens , Aves , Migração Animal , Filogenia
3.
Transbound Emerg Dis ; 69(6): e3436-e3446, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36217218

RESUMO

Wild aquatic birds are the natural reservoirs of avian influenza viruses (AIVs). It is estimated that 100 million seabirds live in the Antarctic Peninsula and adjacent islands, regularly encountering migratory birds that use the islands to nest. Between 2010 and 2013, we collected samples from 865 seabirds in Elephant, King George and Livingston islands, around Antarctica Peninsula: chinstrap penguin (n = 143); gentoo penguin (n = 208); Adelie penguin (n = 46); brown skua (n = 90); Cape petrel (n = 115) and southern giant petrel (n = 263). Serum (n = 673) samples were analysed by competitive ELISA and swabs (n = 614) were tested by one step real-time RT-PCR for avian influenza virus (AIV). Sera from 30 chinstrap penguins, 76 brown skuas and a single Adelie penguin were seropositive for AIV. Thirteen swab samples were AIV positive by RT-PCR, and complete genome sequences of H6N8 AIVs isolated from brown skua and chinstrap penguin in 2011 were obtained. Phylogenetic analyses indicated that all gene segments of the H6N8 viruses were closely related to Argentinian and Chilean AIVs. The prevalence with which we identified evidence for AIVs infection in various Antarctic seabirds suggest viral circulation in Antarctic avifauna and interspecies viral transmission in the sub-Antarctic region.


Assuntos
Charadriiformes , Vírus da Influenza A , Influenza Aviária , Spheniscidae , Animais , Regiões Antárticas , Influenza Aviária/epidemiologia , Filogenia , Animais Selvagens , Vírus da Influenza A/genética , Chile
4.
Sci Rep ; 12(1): 13083, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906292

RESUMO

Avian influenza viruses can pose serious risks to agricultural production, human health, and wildlife. An understanding of viruses in wild reservoir species across time and space is important to informing surveillance programs, risk models, and potential population impacts for vulnerable species. Although it is recognized that influenza A virus prevalence peaks in reservoir waterfowl in late summer through autumn, temporal and spatial variation across species has not been fully characterized. We combined two large influenza databases for North America and applied spatiotemporal models to explore patterns in prevalence throughout the annual cycle and across the continental United States for 30 waterfowl species. Peaks in prevalence in late summer through autumn were pronounced for dabbling ducks in the genera Anas and Spatula, but not Mareca. Spatially, areas of high prevalence appeared to be related to regional duck density, with highest predicted prevalence found across the upper Midwest during early fall, though further study is needed. We documented elevated prevalence in late winter and early spring, particularly in the Mississippi Alluvial Valley. Our results suggest that spatiotemporal variation in prevalence outside autumn staging areas may also represent a dynamic parameter to be considered in IAV ecology and associated risks.


Assuntos
Vírus da Influenza A , Influenza Aviária , Migração Animal , Animais , Animais Selvagens , Patos , Humanos , Influenza Aviária/epidemiologia , Prevalência , Estados Unidos/epidemiologia
5.
PLoS Pathog ; 18(4): e1009973, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35417497

RESUMO

Wild birds can carry avian influenza viruses (AIV), including those with pandemic or panzootic potential, long distances. Even though AIV has a broad host range, few studies account for host diversity when estimating AIV spread. We analyzed AIV genomic sequences from North American wild birds, including 303 newly sequenced isolates, to estimate interspecies and geographic viral transition patterns among multiple co-circulating subtypes. Our results show high transition rates within Anseriformes and Charadriiformes, but limited transitions between these orders. Patterns of transition between species were positively associated with breeding habitat range overlap, and negatively associated with host genetic distance. Distance between regions (negative correlation) and summer temperature at origin (positive correlation) were strong predictors of transition between locations. Taken together, this study demonstrates that host diversity and ecology can determine evolutionary processes that underlie AIV natural history and spread. Understanding these processes can provide important insights for effective control of AIV.


Assuntos
Vírus da Influenza A , Influenza Aviária , Animais , Animais Selvagens , Aves , América do Norte/epidemiologia
6.
Nat Microbiol ; 6(11): 1455-1465, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34702977

RESUMO

Understanding the evolutionary adaptations that enable avian influenza viruses to transmit in mammalian hosts could allow better detection of zoonotic viruses with pandemic potential. We applied ancestral sequence reconstruction to gain viruses representing different adaptive stages of the European avian-like (EA) H1N1 swine influenza virus as it transitioned from avian to swine hosts since 1979. Ancestral viruses representing the avian-like precursor virus and EA swine influenza viruses from 1979-1983, 1984-1987 and 1988-1992 were reconstructed and characterized. Glycan-binding analyses showed stepwise changes in the haemagglutinin receptor-binding specificity of the EA swine influenza viruses-that is, from recognition of both α2,3- and α2,6-linked sialosides to recognition of α2,6-linked sialosides only; however, efficient transmission in piglets was enabled by adaptive changes in the viral polymerase protein and nucleoprotein, which have been fixed since 1983. PB1-Q621R and NP-R351K increased viral replication and transmission in piglets when introduced into the 1979-1983 ancestral virus that lacked efficient transmissibility. The stepwise adaptation of an avian influenza virus to a mammalian host suggests that there may be opportunities to intervene and prevent interspecies jumps through strategic coordination of surveillance and risk assessment activities.


Assuntos
Adaptação Fisiológica , Vírus da Influenza A Subtipo H1N1/fisiologia , Influenza Aviária/virologia , Infecções por Orthomyxoviridae/veterinária , Doenças dos Suínos/virologia , Animais , Aves , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A Subtipo H1N1/classificação , Vírus da Influenza A Subtipo H1N1/genética , Influenza Aviária/transmissão , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Filogenia , Polissacarídeos/química , Polissacarídeos/metabolismo , Receptores Virais/química , Receptores Virais/metabolismo , Suínos , Doenças dos Suínos/metabolismo , Doenças dos Suínos/transmissão , Replicação Viral
7.
Influenza Other Respir Viruses ; 15(6): 767-777, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34323380

RESUMO

BACKGROUND: The 2015 highly pathogenic avian influenza virus (HPAIV) H5N2 clade 2.3.4.4 outbreak in upper midwestern U.S. poultry operations was not detected in wild birds to any great degree during the outbreak, despite wild waterfowl being implicated in the introduction, reassortment, and movement of the virus into North America from Asia. This outbreak led to the demise of over 50 million domestic birds and occurred mainly during the northward spring migration of adult avian populations. OBJECTIVES: There have been no experimental examinations of the pathogenesis, transmission, and population impacts of this virus in adult wild waterfowl with varying exposure histories-the most relevant age class. METHODS: We captured, housed, and challenged adult wild mallards (Anas platyrhynchos) with HPAIV H5N2 clade 2.3.4.4 and measured viral infection, viral excretion, and transmission to other mallards. RESULTS: All inoculated birds became infected and excreted moderate amounts of virus, primarily orally, for up to 14 days. Cohoused, uninoculated birds also all became infected. Serological status had no effect on susceptibility. There were no obvious clinical signs of disease, and all birds survived to the end of the study (14 days). CONCLUSIONS: Based on these results, adult mallards are viable hosts of HPAIV H5N2 regardless of prior exposure history and are capable of transporting the virus over short and long distances. These findings have implications for surveillance efforts. The capture and sampling of wild waterfowl in the spring, when most surveillance programs are not operating, are important to consider in the design of future HPAIV surveillance programs.


Assuntos
Vírus da Influenza A Subtipo H5N2 , Influenza Aviária , Doenças das Aves Domésticas , Animais , Surtos de Doenças , Patos , Humanos , Vírus da Influenza A Subtipo H5N2/genética , Influenza Aviária/epidemiologia , Aves Domésticas , Doenças das Aves Domésticas/epidemiologia
8.
Viruses ; 12(11)2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105913

RESUMO

Each May for over three decades, avian influenza A viruses (IAVs) have been isolated from shorebirds and gulls (order Charadriiformes) at Delaware Bay (DE Bay), USA, which is a critical stopover site for shorebirds on their spring migration to arctic breeding grounds. At DE Bay, most isolates have been recovered from ruddy turnstones (Arenaria interpres), but it is unknown if this species is involved in either the maintenance or movement of these viruses outside of this site. We collected and tested fecal samples from 2823 ruddy turnstones in Florida and Georgia in the southeastern United States during four winter/spring sample periods-2010, 2011, 2012, and 2013-and during the winters of 2014/2015 and 2015/2016. Twenty-five low pathogenicity IAVs were recovered representing five subtypes (H3N4, H3N8, H5N9, H6N1, and H12N2). Many of these subtypes matched those recovered at DE Bay during the previous year or that year's migratory cycle, suggesting that IAVs present on these southern wintering areas represent a source of virus introduction to DE Bay via migrating ruddy turnstones. Analyses of all IAV gene segments of H5N9 and H6N1 viruses recovered from ruddy turnstones at DE Bay during May 2012 and from the southeast during the spring of 2012 revealed a high level of genetic relatedness at the nucleotide level, suggesting that migrating ruddy turnstones move IAVs from wintering grounds to the DE Bay ecosystem.


Assuntos
Migração Animal , Charadriiformes/virologia , Vírus da Influenza A/genética , Influenza Aviária/virologia , Estações do Ano , Animais , Baías , Charadriiformes/fisiologia , Ecossistema , Fezes/virologia , Florida , Georgia , Vírus da Influenza A/isolamento & purificação
9.
J Virol ; 94(23)2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32907981

RESUMO

The genesis of novel influenza viruses through reassortment poses a continuing risk to public health. This is of particular concern in Bangladesh, where highly pathogenic avian influenza viruses of the A(H5N1) subtype are endemic and cocirculate with other influenza viruses. Active surveillance of avian influenza viruses in Bangladeshi live poultry markets detected three A(H5) genotypes, designated H5N1-R1, H5N1-R2, and H5N2-R3, that arose from reassortment of A(H5N1) clade 2.3.2.1a viruses. The H5N1-R1 and H5N1-R2 viruses contained HA, NA, and M genes from the A(H5N1) clade 2.3.2.1a viruses and PB2, PB1, PA, NP, and NS genes from other Eurasian influenza viruses. H5N2-R3 viruses contained the HA gene from circulating A(H5N1) clade 2.3.2.1a viruses, NA and M genes from concurrently circulating A(H9N2) influenza viruses, and PB2, PB1, PA, NP, and NS genes from other Eurasian influenza viruses. Representative viruses of all three genotypes and a parental clade 2.3.2.1a strain (H5N1-R0) infected and replicated in mice without prior adaptation; the H5N2-R3 virus replicated to the highest titers in the lung. All viruses efficiently infected and killed chickens. All viruses replicated in inoculated ferrets, but no airborne transmission was detected, and only H5N2-R3 showed limited direct-contact transmission. Our findings demonstrate that although the A(H5N1) viruses circulating in Bangladesh have the capacity to infect and replicate in mammals, they show very limited capacity for transmission. However, reassortment does generate viruses of distinct phenotypes.IMPORTANCE Highly pathogenic avian influenza A(H5N1) viruses have circulated continuously in Bangladesh since 2007, and active surveillance has detected viral evolution driven by mutation and reassortment. Recently, three genetically distinct A(H5N1) reassortant viruses were detected in live poultry markets in Bangladesh. Currently, we cannot assign pandemic risk by only sequencing viruses; it must be conducted empirically. We found that the H5Nx highly pathogenic avian influenza viruses exhibited high virulence in mice and chickens, and one virus had limited capacity to transmit between ferrets, a property considered consistent with a higher zoonotic risk.


Assuntos
Vírus da Influenza A/classificação , Vírus da Influenza A/isolamento & purificação , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Mamíferos/virologia , Filogenia , Aves Domésticas/virologia , Animais , Bangladesh/epidemiologia , Galinhas , Furões , Genoma Viral , Genótipo , Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A Subtipo H5N2 , Vírus da Influenza A Subtipo H9N2 , Vírus da Influenza A/genética , Influenza Aviária/patologia , Influenza Aviária/transmissão , Pulmão/patologia , Camundongos , Pandemias , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/patologia , Doenças das Aves Domésticas/transmissão , Doenças das Aves Domésticas/virologia , Vírus Reordenados/genética , Proteínas não Estruturais Virais/genética , Virulência
10.
J Virol ; 94(11)2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32188732

RESUMO

The discovery in 1976 of waterfowl as the primary reservoir of influenza A viruses (IAVs) has since spurred decades of waterfowl surveillance efforts by researchers dedicated to understanding the ecology of IAV and its subsequent threat to human and animal health. Here, we employed a multidecade, continental-scale approach of surveillance data to understand trends of seasonal IAV subtype diversity. Between 1976 and 2015, IAVs were detected in 8,427 (10.8%) of 77,969 samples from migratory waterfowl throughout the Central and Mississippi Migratory Flyways in the United States and Canada. A total of 96 hemagglutinin (HA)/neuraminidase (NA) subtype combinations were isolated, which included most HA (H1 to H14) and all 9 NA subtypes. We observed an annual trend of high influenza prevalence, involving a few dominant subtypes, on northern breeding grounds during summer with progressively lowered influenza prevalence, comprised of a highly diverse profile of subtypes, as waterfowl migrate toward southern wintering grounds. Isolates recovered during winter had the highest proportion of mixed and rare HA/NA combinations, indicating increased opportunity for reassortment of IAVs. In addition, 70% of H5 and 49% of H7 IAV isolates were recovered from samples collected during fall and spring, respectively; these are subtypes that can have significant implications for public health and agriculture sectors. Annual cyclical dominance of subtypes on northern breeding grounds is revealed through the longitudinal nature of this study. Our novel findings exhibit the unrealized potential for discovery using existing IAV surveillance data.IMPORTANCE Wild aquatic birds are the primary natural reservoir of influenza A viruses (IAVs) and are therefore responsible for the dispersal and maintenance of IAVs representing a broad range of antigenic and genetic diversity. The aims of IAV surveillance in waterfowl not only relate to understanding the risk of spillover risk to humans, but also to improving our understanding of basic questions related to IAV evolution and ecology. By evaluating several decades of surveillance data from wild aquatic birds sampled along North American migratory flyways, we discovered an annual trend of increasing subtype diversity during southbound migration, peaking on southern wintering grounds. Winter sampling revealed the highest proportion of mixed and rare infections that suggest higher opportunity for spillover. These findings allow improvements to surveillance efforts to robustly capture IAV diversity that will be used for vaccine development and cultivate a more thorough understanding of IAV evolution and persistence mechanisms.


Assuntos
Aves/virologia , Variação Genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A/genética , Influenza Aviária , Neuraminidase/genética , Filogenia , Proteínas Virais/genética , Migração Animal , Animais , Canadá/epidemiologia , Influenza Aviária/epidemiologia , Influenza Aviária/genética , Prevalência , Estados Unidos/epidemiologia
11.
J Wildl Dis ; 56(1): 47-57, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31556839

RESUMO

During 2014, highly pathogenic (HP) influenza A viruses (IAVs) of the A/Goose/Guangdong/1/1996 lineage (GsGD-HP-H5), originating from Asia, were detected in domestic poultry and wild birds in Canada and the US. These clade 2.3.4.4 GsGD-HP-H5 viruses included reassortants possessing North American lineage gene segments; were detected in wild birds in the Pacific, Central, and Mississippi flyways; and caused the largest HP IAV outbreak in poultry in US history. To determine if an antibody response indicative of previous infection with clade 2.3.4.4 GsGD-HP-H5 IAV could be detected in North American wild waterfowl sampled before, during, and after the 2014-15 outbreak, sera from 2,793 geese and 3,715 ducks were tested by blocking enzyme-linked immunosorbent assay and hemagglutination inhibition (HI) tests using both clade 2.3.4.4 GsGD-HPH5 and North American lineage low pathogenic (LP) H5 IAV antigens. We detected an antibody response meeting a comparative titer-based criteria (HI titer observed with 2.3.4.4 GsGD-HP-H5 antigens exceeded the titer observed for LP H5 antigen by two or more dilutions) for previous infection with clade 2.3.4.4 GsGD-HP-H5 IAV in only five birds, one Blue-winged Teal (Spatula discors) sampled during the outbreak and three Mallards (Anas platyrhynchos) and one Canada Goose (Branta canadensis) sampled during the post-outbreak period. These serologic results are consistent with the spatiotemporal extent of the outbreak in wild birds in North America during 2014 and 2015 and limited exposure of waterfowl to GsGD-HP-H5 IAV, particularly in the central and eastern US.


Assuntos
Anseriformes , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A/patogenicidade , Influenza Aviária/virologia , Animais , Animais Selvagens , Anticorpos Antivirais/sangue , Vírus da Influenza A/genética , Influenza Aviária/epidemiologia , América do Norte/epidemiologia
12.
J Virol ; 93(13)2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30996092

RESUMO

Subtype H10 influenza A viruses (IAVs) have been recovered from domestic poultry and various aquatic bird species, and sporadic transmission of these IAVs from avian species to mammals (i.e., human, seal, and mink) are well documented. In 2015, we isolated four H10N7 viruses from gulls in Iceland. Genomic analyses showed four gene segments in the viruses were genetically associated with H10 IAVs that caused influenza outbreaks and deaths among European seals in 2014. Antigenic characterization suggested minimal antigenic variation among these H10N7 isolates and other archived H10 viruses recovered from human, seal, mink, and various avian species in Asia, Europe, and North America. Glycan binding preference analyses suggested that, similar to other avian-origin H10 IAVs, these gull-origin H10N7 IAVs bound to both avian-like alpha 2,3-linked sialic acids and human-like alpha 2,6-linked sialic acids. However, when the gull-origin viruses were compared with another Eurasian avian-origin H10N8 IAV, which caused human infections, the gull-origin virus showed significantly higher binding affinity to human-like glycan receptors. Results from a ferret experiment demonstrated that a gull-origin H10N7 IAV replicated well in turbinate, trachea, and lung, but replication was most efficient in turbinate and trachea. This gull-origin H10N7 virus can be transmitted between ferrets through the direct contact and aerosol routes, without prior adaptation. Gulls share their habitat with other birds and mammals and have frequent contact with humans; therefore, gull-origin H10N7 IAVs could pose a risk to public health. Surveillance and monitoring of these IAVs at the wild bird-human interface should be continued.IMPORTANCE Subtype H10 avian influenza A viruses (IAVs) have caused sporadic human infections and enzootic outbreaks among seals. In the fall of 2015, H10N7 viruses were recovered from gulls in Iceland, and genomic analyses showed that the viruses were genetically related with IAVs that caused outbreaks among seals in Europe a year earlier. These gull-origin viruses showed high binding affinity to human-like glycan receptors. Transmission studies in ferrets demonstrated that the gull-origin IAV could infect ferrets, and that the virus could be transmitted between ferrets through direct contact and aerosol droplets. This study demonstrated that avian H10 IAV can infect mammals and be transmitted among them without adaptation. Thus, avian H10 IAV is a candidate for influenza pandemic preparedness and should be monitored in wildlife and at the animal-human interface.


Assuntos
Furões/virologia , Vírus da Influenza A Subtipo H10N7/patogenicidade , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Aerossóis , Animais , Animais Selvagens/virologia , Aves/virologia , Linhagem Celular , Charadriiformes/virologia , Genoma Viral , Humanos , Islândia , Vírus da Influenza A Subtipo H10N7/classificação , Vírus da Influenza A Subtipo H10N7/genética , Vírus da Influenza A Subtipo H10N7/isolamento & purificação , Influenza Aviária/virologia , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/patologia , Pandemias , Filogenia , Polissacarídeos , Sistema Respiratório/patologia , Sistema Respiratório/virologia , Alinhamento de Sequência
13.
Sci Rep ; 8(1): 10693, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-30013138

RESUMO

Fatal human cases of avian-origin H10N8 influenza virus infections have raised concern about their potential for human-to-human transmission. H10 subtype avian influenza viruses (AIVs) have been isolated from wild and domestic aquatic birds across Eurasia and North America. We isolated eight H10 AIVs (four H10N7, two H10N9, one H10N1, and one H10N6) from live poultry markets in Bangladesh. Genetic analyses demonstrated that all eight isolates belong to the Eurasian lineage. HA phylogenetic and antigenic analyses indicated that two antigenically distinct groups of H10 AIVs are circulating in Bangladeshi live poultry markets. We evaluated the virulence of four representative H10 AIV strains in DBA/2J mice and found that they replicated efficiently in mice without prior adaptation. Moreover, H10N6 and H10N1 AIVs caused high mortality with systemic dissemination. These results indicate that H10 AIVs pose a potential threat to human health and the mechanisms of their transmissibility should be elucidated.


Assuntos
Vírus da Influenza A Subtipo H10N7/patogenicidade , Infecções por Orthomyxoviridae/virologia , Doenças das Aves Domésticas/virologia , Aves Domésticas/virologia , Células A549 , Animais , Antígenos Virais/genética , Antígenos Virais/imunologia , Bangladesh , Modelos Animais de Doenças , Hemaglutinação por Vírus/imunologia , Humanos , Vírus da Influenza A Subtipo H10N7/genética , Vírus da Influenza A Subtipo H10N7/imunologia , Vírus da Influenza A Subtipo H10N7/isolamento & purificação , Camundongos , Camundongos Endogâmicos DBA , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/mortalidade , Infecções por Orthomyxoviridae/transmissão , Filogenia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/mortalidade , Doenças das Aves Domésticas/transmissão , RNA Viral/genética , RNA Viral/isolamento & purificação , Replicação Viral
14.
J Virol ; 92(19)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30045988

RESUMO

Wild-bird origin influenza A viruses (IAVs or avian influenza) have led to sporadic outbreaks among domestic poultry in the United States and Canada, resulting in economic losses through the implementation of costly containment practices and destruction of birds. We used evolutionary analyses of virus sequence data to determine that 78 H5 low-pathogenic avian influenza viruses (LPAIVs) isolated from domestic poultry in the United States and Canada during 2001 to 2017 resulted from 18 independent virus introductions from wild birds. Within the wild-bird reservoir, the hemagglutinin gene segments of H5 LPAIVs exist primarily as two cocirculating genetic sublineages, and our findings suggest that the H5 gene segments flow within each migratory bird flyway and among adjacent flyways, with limited exchange between the nonadjacent Atlantic and Pacific Flyways. Phylogeographic analyses provided evidence that IAVs from dabbling ducks and swans/geese contributed to the emergence of viruses among domestic poultry. H5 LPAIVs isolated from commercial farm poultry (i.e., turkey) that were descended from a single introduction typically remained a single genotype, whereas those from live-bird markets sometimes led to multiple genotypes, reflecting the potential for reassortment with other IAVs circulating within live-bird markets. H5 LPAIVs introduced from wild birds to domestic poultry represent economic threats to the U.S. poultry industry, and our data suggest that such introductions have been sporadic, controlled effectively through production monitoring and a stamping-out policy, and are, therefore, unlikely to result in sustained detections in commercial poultry operations.IMPORTANCE Integration of viral genome sequencing into influenza surveillance for wild birds and domestic poultry can elucidate evolutionary pathways of economically costly poultry pathogens. Evolutionary analyses of H5 LPAIVs detected in domestic poultry in the United States and Canada during 2001 to 2017 suggest that these viruses originated from repeated introductions of IAVs from wild birds, followed by various degrees of reassortment. Reassortment was observed where biosecurity was low and where opportunities for more than one virus to circulate existed (e.g., congregations of birds from different premises, such as live-bird markets). None of the H5 lineages identified were maintained for the long term in domestic poultry, suggesting that management strategies have been effective in minimizing the impacts of virus introductions on U.S. poultry production.


Assuntos
Genótipo , Vírus da Influenza A Subtipo H5N2/genética , Influenza Aviária , Doenças das Aves Domésticas , Aves Domésticas/virologia , Animais , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/patogenicidade , Vírus da Influenza A Subtipo H5N2/patogenicidade , Influenza Aviária/epidemiologia , Influenza Aviária/genética , América do Norte/epidemiologia , Filogeografia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/genética
15.
Influenza Other Respir Viruses ; 12(6): 814-817, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29989679

RESUMO

The H9N2 influenza viruses that have become established in Bangladeshi live poultry markets possess five gene segments of the highly pathogenic H7N3 avian influenza virus. We assessed the replication, transmission, and disease potential of three H9N2 viruses in chickens and New World quail. Each virus replicated to high titers and transmitted by the airborne route to contacts in both species. Infected chickens showed no disease signs, and the viruses differed in their disease potential in New World quail. New World quail were more susceptible than chickens to H9N2 viruses and shed virus after airborne transmission for 10 days. Consequently, New World quail are a potential threat in the maintenance and spread of influenza virus in live poultry markets.


Assuntos
Galinhas , Vírus da Influenza A Subtipo H9N2/isolamento & purificação , Influenza Aviária/virologia , Codorniz , Animais , Bangladesh , Suscetibilidade a Doenças , Transmissão de Doença Infecciosa , Vírus da Influenza A Subtipo H9N2/patogenicidade , Vírus da Influenza A Subtipo H9N2/fisiologia , Influenza Aviária/patologia , Infecções por Orthomyxoviridae , Replicação Viral
16.
J Wildl Dis ; 54(4): 708-715, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29741997

RESUMO

Influenza A virus (IAV) infections in shorebirds at Delaware Bay, New Jersey, US, have historically included avian hemagglutinin (HA) subtypes H1-13 and H16. In a given year, infections are characterized by a limited number of HA and neuraminidase subtypes and a dominant HA subtype that often represents >50% of all isolates. Predominant HA subtypes shift between consecutive years. In addition, infection prevalence is consistently higher in Ruddy Turnstones (RUTU; Arenaria interpres morinella) compared to Red Knots (REKN; Calidris canutus rufa), despite comparable rates of exposure. To investigate a potential immunological basis for this phenomenon, a virus microneutralization assay was used to detect subtype-specific, neutralizing antibodies to H1-H12 in sera collected from RUTUs from 2012-16 and REKNs in 2012, 2013, and 2016. Neutralizing antibodies to one or more subtypes were detected in 36% (222/611) of RUTUs. Prevalence of antibodies to subtypes H6 and H11 remained high throughout the study, and these virus subtypes were isolated every year, suggesting a continual source of exposure. Antibody prevalence was intermediate for most IAV subtypes that were isolated in 2-3 of 5 yr (H1, H3, H5, H9, H10, and H12) but was low for H7 viruses, despite the isolation of this virus subtype in 3 of 5 yr. This suggests a reduced antigenicity of H7 IAVs compared to other subtypes. Antibody prevalence was low for H4 virus that was isolated once, and H2 and H8 viruses that were never isolated. Neutralizing antibodies were detected in 66% (169/257) of REKNs and subtype-specific antibody prevalences were higher in REKNs than RUTUs with few exceptions. The results suggest that population immunity influences which species is infected at Delaware Bay, indicate that IAV dynamics are subtype-dependent, and demonstrate the utility of the microneutralization assay as a supportive tool for field research.


Assuntos
Anticorpos Antivirais/sangue , Charadriiformes , Vírus da Influenza A/imunologia , Influenza Aviária/imunologia , Animais , Anticorpos Neutralizantes , Influenza Aviária/epidemiologia , New Jersey/epidemiologia , Prevalência , Fatores de Tempo
17.
J Infect Dis ; 218(7): 1054-1060, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-29762672

RESUMO

Background: Influenza A pandemics cause significant mortality and morbidity. H2N2 viruses have caused a prior pandemic, and are circulating in avian reservoirs. The age-related frequency of current population immunity to H2 viruses was evaluated. Methods: Hemagglutinin inhibition (HAI) assays against historical human and recent avian influenza A(H2N2) viruses were performed across age groups in Rochester, New York, and Hong Kong, China. The impact of existing cross-reactive HAI immunity on the effective reproduction number was modeled. Results: One hundred fifty individual sera from Rochester and 295 from Hong Kong were included. Eighty-five percent of patients born in Rochester and Hong Kong before 1968 had HAI titers ≥1:40 against A/Singapore/1/57, and >50% had titers ≥1:40 against A/Berkeley/1/68. The frequency of titers ≥1:40 to avian H2N2 A/mallard/England/727/06 and A/mallard/Netherlands/14/07 in subjects born before 1957 was 62% and 24%, respectively. There were no H2 HAI titers >1:40 in individuals born after 1968. These levels of seroprevalence reduce the initial reproduction number of A/Singapore/1/1957 or A/Berkeley/1/68 by 15%-20%. A basic reproduction number (R0) of the emerging transmissible virus <1.2 predicts a preventable pandemic. Conclusions: Population immunity to H2 viruses is insufficient to block epidemic spread of H2 virus. An H2N2 pandemic would have lower impact in those born before 1968.


Assuntos
Vírus da Influenza A Subtipo H2N2/imunologia , Influenza Humana/epidemiologia , Pandemias , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Criança , Pré-Escolar , Demografia , Feminino , Hong Kong/epidemiologia , Humanos , Imunidade , Lactente , Vírus da Influenza A Subtipo H2N2/isolamento & purificação , Influenza Humana/imunologia , Influenza Humana/virologia , Masculino , Pessoa de Meia-Idade , New York/epidemiologia , Medição de Risco , Estudos Soroepidemiológicos , Adulto Jovem
18.
Virus Genes ; 54(4): 543-549, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29796944

RESUMO

Among 16 haemagglutinin (HA) subtypes of avian influenza viruses (AIVs), H13 AIVs have rarely been isolated in wild waterfowl. H13 AIVs cause asymptomatic infection and are maintained mainly in gull and tern populations; however, the recorded antigenic information relating to the viruses has been limited. In this study, 2 H13 AIVs, A/duck/Hokkaido/W345/2012 (H13N2) and A/duck/Hokkaido/WZ68/2012 (H13N2), isolated from the same area in the same year in our surveillance, were genetically and antigenically analyzed with 10 representative H13 strains including a prototype strain, A/gull/Maryland/704/1977 (H13N6). The HA genes of H13 AIVs were phylogenetically divided into 3 groups (I, II, and III). A/duck/Hokkaido/W345/2012 (H13N2) was genetically classified into Group III. This virus was distinct from a prototype strain, A/gull/Maryland/704/1977 (H13N6), and the virus, A/duck/Hokkaido/WZ68/2012 (H13N2), both belonging to Group I. Antigenic analysis indicated that the viruses of Group I were antigenically closely related to those of Group II, but distinct from those of Group III, including A/duck/Hokkaido/W345/2012 (H13N2). In summary, our study indicates that H13 AIVs have undergone antigenic diversification in nature.


Assuntos
Animais Selvagens , Variação Antigênica , Aves , Variação Genética , Vírus da Influenza A/genética , Vírus da Influenza A/imunologia , Influenza Aviária/imunologia , Influenza Aviária/virologia , Substituição de Aminoácidos , Animais , Antígenos Virais/genética , Antígenos Virais/imunologia , Genoma Viral , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A/classificação , Mutação , Filogenia , RNA Viral
19.
Emerg Microbes Infect ; 7(1): 70, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29691394

RESUMO

Surveillance of wild aquatic birds and free-range domestic ducks in the Tanguar Haor wetlands in Bangladesh has identified influenza virus subtypes H3N6, H7N1, H7N5, H7N9, and H15N9. Molecular characterization of these viruses indicates their contribution to the genesis of new genotypes of H5N1 influenza viruses from clade 2.3.2.1a that are dominant in poultry markets in Bangladesh as well as to the genesis of the highly pathogenic H5N8 virus currently causing disease outbreaks in domestic poultry in Europe and the Middle East. Therefore, we studied the antigenicity, replication, and pathogenicity of influenza viruses isolated from Tanguar Haor in the DBA/2J mouse model. All viruses replicated in the lung without prior mammalian adaptation, and H7N1 and H7N9 viruses caused 100% and 60% mortality, respectively. H7N5 viruses replicated only in the lungs, whereas H7N1 and H7N9 viruses also replicated in the heart, liver, and brain. Replication and transmission studies in mallard ducks showed that H7N1 and H7N9 viruses replicated in ducks without clinical signs of disease and shed at high titers from the cloaca of infected and contact ducks, which could facilitate virus transmission and spread. Our results indicate that H7 avian influenza viruses from free-range ducks can replicate in mammals, cause severe disease, and be efficiently transmitted to contact ducks. Our study highlights the role of free-range ducks in the spread of influenza viruses to other species in live poultry markets and the potential for these viruses to infect and cause disease in mammals.


Assuntos
Animais Selvagens/virologia , Patos/virologia , Vírus da Influenza A/genética , Vírus da Influenza A/patogenicidade , Mamíferos/virologia , Replicação Viral , Animais , Bangladesh/epidemiologia , Surtos de Doenças/veterinária , Monitoramento Epidemiológico , Europa (Continente)/epidemiologia , Genótipo , Humanos , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Virus da Influenza A Subtipo H5N1/patogenicidade , Virus da Influenza A Subtipo H5N1/fisiologia , Vírus da Influenza A Subtipo H7N1/isolamento & purificação , Vírus da Influenza A Subtipo H7N1/patogenicidade , Vírus da Influenza A Subtipo H7N1/fisiologia , Subtipo H7N9 do Vírus da Influenza A/isolamento & purificação , Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Subtipo H7N9 do Vírus da Influenza A/fisiologia , Vírus da Influenza A/classificação , Vírus da Influenza A/fisiologia , Influenza Aviária/epidemiologia , Influenza Aviária/transmissão , Influenza Aviária/virologia , Influenza Humana/epidemiologia , Camundongos , Oriente Médio/epidemiologia , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/veterinária , Infecções por Orthomyxoviridae/virologia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/transmissão , Doenças das Aves Domésticas/virologia
20.
Influenza Other Respir Viruses ; 12(2): 220-231, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29143465

RESUMO

BACKGROUND: There is insufficient knowledge about the relation of avian influenza virus (AIV) to migratory birds in South America. Accordingly, we studied samples obtained over a 4-year period (2009-2012) from wild birds at a major wintering site in southern Brazil. METHODS: We obtained 1212 oropharyngeal/cloacal samples from wild birds at Lagoa do Peixe National Park and screened them for influenza A virus by RT-PCR amplification of the matrix gene. Virus isolates were subjected to genomic sequencing and antigenic characterization. RESULTS: Forty-eight samples of 1212 (3.96%) contained detectable influenza virus RNA. Partial viral sequences were obtained from 12 of these samples, showing the presence of H2N2 (1), H6Nx (1), H6N1 (8), H9N2 (1), and H12N5 (1) viruses. As H6 viruses predominated, we generated complete genomes from all 9 H6 viruses. Phylogenetic analyses showed that they were most similar to viruses of South American lineage. The H6N1 viruses caused no disease signs in infected ferrets and, despite genetic differences, were antigenically similar to North American isolates. CONCLUSIONS: Lagoa do Peixe National Park is a source of multiple AIV subtypes, with the levels of influenza virus in birds being highest at the end of their wintering period in this region. H6N1 viruses were the predominant subtype identified. These viruses were more similar to viruses of South American lineage than to those of North American lineage.


Assuntos
Aves/virologia , Variação Genética , Vírus da Influenza A/classificação , Vírus da Influenza A/isolamento & purificação , Influenza Aviária/virologia , Animais , Antígenos Virais/análise , Brasil , Cloaca/virologia , Vírus da Influenza A/genética , Orofaringe/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Proteínas da Matriz Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...